Features
- Contactless Read/Write Data Transmission
- Radio Frequency f_{RF} from 100 kHz to 150 kHz
- e5550 Binary Compatible or T5557 Extended Mode
- Small Size, Configurable for ISO/IEC 11784/785 Compatibility
- 75 pF On-chip Resonant Capacitor (Mask Option)
- 7 × 32-bit EEPROM Data Memory Including 32-bit Password
- Separate 64-bit memory for Traceability Data
- 32-bit Configuration Register in EEPROM to Setup:
 - Data Rate
 - RF/2 to RF/128, Binary Selectable or
 - Fixed e5550 Data Rates
 - Modulation/Coding
 - FSK, PSK, Manchester, Biphase, NRZ
 - Other Options
 - Password Mode
 - Max Block Feature
 - Answer-On-Request (AOR) Mode
 - Inverse Data Output
 - Direct Access Mode
 - Sequence Terminator(s)
 - Write Protection (Through Lock-bit per Block)
 - Fast Write Method (5 Kbps versus 2 Kbps)
 - OTP Functionality
 - POR Delay up to 67 ms

1. Description
The T5557 is a contactless R/W IDentification IC (IDIC®) for applications in the 125 kHz frequency range. A single coil, connected to the chip, serves as the IC’s power supply and bi-directional communication interface. The antenna and chip together form a transponder or tag.

The on-chip 330-bit EEPROM (10 blocks, 33 bits each) can be read and written block-wise from a reader. Block 0 is reserved for setting the operation modes of the T5557 tag. Block 7 may contain a password to prevent unauthorized writing.

Data is transmitted from the IDIC using load modulation. This is achieved by damping the RF field with a resistive load between the two terminals Coil 1 and Coil 2. The IC receives and decodes 100% amplitude modulated (OOK) pulse interval encoded bit streams from the base station or reader.
2. System Block Diagram

Figure 2-1. RFID System Using T5557 Tag

![System Block Diagram](image)

3. T5557 – Building Blocks

Figure 3-1. Block Diagram

![Block Diagram](image)

3.1 Analog Front End (AFE)

The AFE includes all circuits which are directly connected to the coil. It generates the IC’s power supply and handles the bi-directional data communication with the reader. It consists of the following blocks:

- Rectifier to generate a DC supply voltage from the AC coil voltage
- Clock extractor
- Switchable load between Coil 1/Coil 2 for data transmission from tag to the reader
- Field gap detector for data transmission from the base station to the tag
- ESD protection circuitry
3.2 Data-rate Generator
The data rate is binary programmable to operate at any data rate between RF/2 and RF/128 or equal to any of the fixed e5550/e5551 and T5554 bitrates (RF/8, RF/16, RF/32, RF/40, RF/50, RF/64, RF/100 and RF/128).

3.3 Write Decoder
This function decodes the write gaps and verifies the validity of the data stream according to the Atmel e555x write method (pulse interval encoding).

3.4 HV Generator
This on-chip charge pump circuit generates the high voltage required for programming of the EEPROM.

3.5 DC Supply
Power is externally supplied to the IDIC via the two coil connections. The IC rectifies and regulates this RF source and uses it to generate its supply voltage.

3.6 Power-On Reset (POR)
This circuit delays the IDIC functionality until an acceptable voltage threshold has been reached.

3.7 Clock Extraction
The clock extraction circuit uses the external RF signal as its internal clock source.

3.8 Controller
The control-logic module executes the following functions:
- Load-mode register with configuration data from EEPROM block 0 after power-on and also during reading
- Control memory access (read, write)
- Handle write data transmission and write error modes
- The first two bits of the reader to tag data stream are the opcode, e.g., write, direct access or reset
- In password mode, the 32 bits received after the opcode are compared with the password stored in memory block 7

3.9 Mode Register
The mode register stores the configuration data from the EEPROM block 0. It is continually refreshed at the start of every block read and (re-)loaded after any POR event or reset command. On delivery the mode register is preprogrammed with the value ‘0014 8000’h which corresponds to continuous read of block 0, Manchester coded, RF/64.
Figure 3-2. Block 0 Configuration Mapping – e5550 Compatibility Mode

3.10 Modulator

The modulator consists of data encoders for the following basic types of modulation:

Table 3-1. Types of e5550-compatible Modulation Modes

<table>
<thead>
<tr>
<th>Mode</th>
<th>Direct Data Output</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSK1a(1)</td>
<td>FSK/8-/5</td>
<td>“0” = rf/8; “1” = rf/5</td>
</tr>
<tr>
<td>FSK2a(1)</td>
<td>FSK/8-/10</td>
<td>“0” = rf/8; “1” = rf/10</td>
</tr>
<tr>
<td>FSK1(1)</td>
<td>FSK/5-/8</td>
<td>“0” = rf/5; “1” = rf/8</td>
</tr>
<tr>
<td>FSK2(1)</td>
<td>FSK/10-/8</td>
<td>“0” = rf/10; “1” = rf/8</td>
</tr>
<tr>
<td>PSK1(2)</td>
<td></td>
<td>Phase change when input changes</td>
</tr>
<tr>
<td>PSK2(2)</td>
<td></td>
<td>Phase change on bit clock if input high</td>
</tr>
<tr>
<td>PSK3(2)</td>
<td></td>
<td>Phase change on rising edge of input</td>
</tr>
<tr>
<td>Manchester</td>
<td></td>
<td>“0” = falling edge, “1” = rising edge</td>
</tr>
<tr>
<td>Biphase</td>
<td></td>
<td>“1” creates an additional mid-bit change</td>
</tr>
<tr>
<td>NRZ</td>
<td></td>
<td>“1” = damping on, “0” = damping off</td>
</tr>
</tbody>
</table>

Notes: 1. A common multiple of bitrate and FSK frequencies is recommended.
2. In PSK mode the selected data rate has to be an integer multiple of the PSK sub-carrier frequency.
3.11 Memory

The memory is a 330-bit EEPROM, which is arranged in 10 blocks of 33 bits each. All 33 bits of a block, including the lock bit, are programmed simultaneously.

Block 0 of page 0 contains the mode/configuration data, which is not transmitted during regular-read operations. Block 7 of page 0 may be used as a write protection password.

Bit 0 of every block is the lock bit for that block. Once locked, the block (including the lock bit itself) is not re-programmable through the RF field again.

Blocks 1 and 2 of page 1 contain traceability data and are transmitted with the modulation parameters defined in the configuration register after the opcode “11” is issued by the reader (see Figure 4-6 on page 10). These traceability data blocks are programmed and locked by Atmel.

![Memory Map](image)

Figure 3-3. Memory Map

3.12 Traceability Data Structure

Blocks 1 and 2 of page 1 contain the traceability data and are programmed and locked by Atmel during production testing. The most significant byte of block 1 is fixed to “E0”hex, the allocation class (ACL) as defined in ISO/IEC 15963-1. The second byte is therefore defined as the manufacturer’s ID of Atmel (= “15”hex). The following 8 bits are used as IC reference byte (ICR bits 47 to 40). The 3 most significant bits define the IC and/or foundry version of the T5557. The lower 5 bits are by default reset (= 00) as the Atmel standard value. Other values may be assigned on request to high volume customers as tag issuer identification.

The lower 40 bits of the data encode the traceability information of Atmel and conform to a unique numbering system. These 40 data bits are divided in two sub-groups, a 5-digit lot ID number, the binary wafer number (5 bit) concatenated with the sequential die number per wafer.
Figure 3-4. T5557 Traceability Data Structure

4. Operating the T5557

4.1 Initialization and POR Delay

The Power-On-Reset (POR) circuit remains active until an adequate voltage threshold has been reached. This in turn triggers the default start-up delay sequence. During this configuration period of about 192 field clocks, the T5557 is initialized with the configuration data stored in EEPROM block 0. During initialization of the configuration block 0, all T55570x variants the load damping is active permanently (see Figure 4-5 on page 10). The T55571x types (without damping option) achieve a longer read range based on the lower activation field strength.

If the POR-delay bit is reset, no additional delay is observed after the configuration period. Tag modulation in regular-read mode will be observed about 3 ms after entering the RF field. If the POR delay bit is set, the T5557 remains in a permanent damping state until 8190 internal field clocks have elapsed.

\[
T_{\text{INIT}} = (192 + 8190 \times \text{POR delay}) \times T_C = 67 \text{ ms} ; \quad T_C = 8 \mu s \text{ at } 125 \text{ kHz}
\]

Any field gap occurring during this initialization phase will restart the complete sequence. After this initialization time the T5557 enters regular-read mode and modulation starts automatically using the parameters defined in the configuration register.

4.2 Tag to Reader Communication

During normal operation, the data stored within the EEPROM is cycled and the Coil 1, Coil 2 terminals are load modulated. This resistive load modulation can be detected at the reader module.
4.3 Regular-read Mode

In regular-read mode data from the memory is transmitted serially, starting with block 1, bit 1, up to the last block (e.g., 7), bit 32. The last block which will be read is defined by the mode parameter field MAXBLK in EEPROM block 0. When the data block addressed by MAXBLK has been read, data transmission restarts with block 1, bit 1.

The user may limit the cyclic datastream in regular-read mode by setting the MAXBLK between 0 and 7 (representing each of the 8 data blocks). If set to 7, blocks 1 through 7 can be read. If set to 1, only block 1 is transmitted continuously. If set to 0, the contents of the configuration block (normally not transmitted) can be read. In the case of MAXBLK = 0 or 1, regular-read mode can not be distinguished from block-read mode.

Figure 4-1. Examples for Different MAXBLK Settings

| MAXBLK = 5 | 0 | Block 1 | Block 4 | Block 5 | Block 1 | Block 2 |
| Loading block 0 |

| MAXBLK = 2 | 0 | Block 1 | Block 2 | Block 1 | Block 2 | Block 1 |
| Loading block 0 |

| MAXBLK = 0 | 0 | Block 0 |
| Loading block 0 |

Every time the T5557 enters regular- or block-read mode, the first bit transmitted is a logical “0”. The data stream starts with block 1, bit 1, continues through MAXBLK, bit 32, and cycles continuously if in regular-read mode.

Note: This behavior is different from the original e555x and helps to decode PSK-modulated data.

4.4 Block-read Mode

With the direct access command, the addressed block is repetitively read only. This mode is called block-read mode. Direct access is entered by transmitting the page access opcode (“10” or “11”), a single “0” bit and the requested 3-bit block address when the tag is in normal mode.

In password mode (PWD bit set), the direct access to a single block needs the valid 32-bit password to be transmitted after the page access opcode whereas a “0” bit and the 3-bit block address follow afterwards. In case the transmitted password does not match with the contents of block 7, the T5557 tag returns to the regular-read mode.

Note: A direct access to block 0 of page 1 will read the configuration data of block 0, page 0. A direct access to block 3 to 7 of page 1 reads all data bits as zero.

4.5 e5550 Sequence Terminator

The sequence terminator ST is a special damping pattern which is inserted before the first block and may be used to synchronize the reader. This e5550-compatible sequence terminator consists of 4 bit periods with underlaying data values of “1”. During the second and the fourth bit period, modulation is switched off (Manchester encoding – switched on). Biphase modulated data blocks need fixed leading and trailing bits in combination with the sequence terminator to be identified reliable.

The sequence terminator may be individually enabled by setting of mode bit 29 (ST = “1”) in the e5550-compatibility mode (X-mode = “0”).
In the regular-read mode, the sequence terminator is inserted at the start of each MAXBLK-limited read data stream.

In block-read mode – after any block-write or direct access command – or if MAXBLK was set to 0 or 1, the sequence terminator is inserted before the transmission of the selected block.

Especially this behavior is different to former e5550-compatible ICs (T5551, T5554).

Figure 4-2. Read Data Stream with Sequence Terminator

<table>
<thead>
<tr>
<th>No terminator</th>
<th>Block 1</th>
<th>Block 2</th>
<th>MAXBLK</th>
<th>Block 1</th>
<th>Block 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular read mode</td>
<td>Sequence terminator</td>
<td>Block 1</td>
<td>Block 2</td>
<td>MAXBLK</td>
<td>Block 1</td>
</tr>
<tr>
<td>ST = on</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-3. e5550-compatible Sequence Terminator Waveforms

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Bit period</th>
<th>Data 1</th>
<th>Data 1</th>
<th>Data 1</th>
<th>Data 1</th>
<th>First Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waveforms per different modulation types</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manchester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSK</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sequence terminator not suitable for Biphase or PSK modulation

4.6 Reader to Tag Communication

Data is written to the tag by interrupting the RF field with short field gaps (on-off keying) in accordance with the e5550 write method. The time between two gaps encodes the “0/1” information to be transmitted (pulse interval encoding). The duration of the gaps is usually 50 µs to 150 µs. The time between two gaps is nominally 24 field clocks for a “0” and 54 field clocks for a “1”. When there is no gap for more than 64 field clocks after a previous gap, the T5557 exits the write mode. The tag starts with the command execution if the correct number of bits were received. If there is a failure detected the T5557 does not continue and will enter regular-read mode.

4.7 Start Gap

The initial gap is referred to as the start gap. This triggers the reader to tag communication. During this mode of operation, the receive damping is permanently enabled to ease gap detection. The start gap may need to be longer than subsequent gaps in order to be detected reliably.

A start gap will be accepted at any time after the mode register has been loaded (≥ 3 ms). A single gap will not change the previously selected page (by former opcode “10” or “11”).
4.8 Write Data Protocol

The T5557 expects to receive a dual bit opcode as the first two bits of a reader command sequence. There are three valid opcodes:

- The opcodes “10” and “11” precede all block write and direct access operations for page 0 and page 1
- The RESET opcode “00” initiates a POR cycle
- The opcode “01” precedes all test mode write operations. Any test mode access is ignored after master key (bits 1 to 4) in block 0 has been set to “6”. Any further modifications of the master key are prohibited by setting the lock bit of block 0 or the OTP bit.

Writing has to follow these rules:

- Standard write needs the opcode, the lock bit, 32 data bits and the 3-bit address (38 bits total)
- Protected write (PWD bit set) requires a valid 32-bit password between opcode and data, address bits
- For the AOR wake-up command an opcode and a valid password are necessary to select and activate a specific tag

Note: The data bits are read in the same order as written.

If the transmitted command sequence is invalid, the T5557 enters regular-read mode with the previously selected page (by former opcode “10” or “11”).
4.9 Password

When password mode is active (PWD = 1), the first 32 bits after the opcode are regarded as the password. They are compared bit by bit with the contents of block 7, starting at bit 1. If the comparison fails, the T5557 will not program the memory, instead it will restart in regular-read mode once the command transmission is finished.

Note: In password mode, MAXBLK should be set to a value below 7 to prevent the password from being transmitted by the T5557.

Each transmission of the direct access command (two opcode bits, 32 bits password, “0” bit plus 3 address bits = 38 bits) needs about 18 ms. Testing all possible combinations (about 4.3 billion) takes about two years.

Figure 4-5. Complete Writing Sequence

![Complete Writing Sequence Diagram]

Figure 4-6. T5557 Command Formats

<table>
<thead>
<tr>
<th>Command Type</th>
<th>Opcode</th>
<th>Password</th>
<th>Block data</th>
<th>Address</th>
<th>Lock bit</th>
<th>Start gap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard write</td>
<td>1p*</td>
<td>L 1</td>
<td>32</td>
<td>Addr 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Protected write</td>
<td>1p*</td>
<td>1 Password</td>
<td>32</td>
<td>L 1</td>
<td>32</td>
<td>2 Addr 0</td>
</tr>
<tr>
<td>AOR (wake-up command)</td>
<td>10</td>
<td>1 Password</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct access (PWD = 1)</td>
<td>1p*</td>
<td>1 Password</td>
<td>32</td>
<td>0</td>
<td>2 Addr 0</td>
<td></td>
</tr>
<tr>
<td>Direct access (PWD = 0)</td>
<td>1p*</td>
<td>0</td>
<td>2 Addr 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Page 0/1 regular read</td>
<td>1p*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reset command</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p = page selector
4.10 Answer-On-Request (AOR) Mode

When the AOR bit is set, the T5557 does not start modulation in the regular-read mode after loading configuration block 0. The tag waits for a valid AOR data stream (“wake-up command”) from the reader before modulation is enabled. The wake-up command consists of the opcode (“10”) followed by a valid password. The selected tag will remain active until the RF field is turned off or a new command with a different password is transmitted which may address another tag in the RF field.

Table 4-2. T5557 — Modes of Operation

<table>
<thead>
<tr>
<th>PWD</th>
<th>AOR</th>
<th>Behavior of Tag after Reset Command or POR</th>
<th>De-activate Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Answer-On-Request (AOR) mode:</td>
<td>Command with non-matching password deactivates the selected tag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Modulation starts after wake-up with a matching password</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Programming needs valid password</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Password mode:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Modulation in regular-read mode starts after reset</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Programming and direct access needs valid password</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>--</td>
<td>Normal mode:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Modulation in regular-read mode starts after reset</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Programming and direct access without password</td>
<td></td>
</tr>
</tbody>
</table>

Figure 4-7. Answer-On-Request (AOR) Mode

![Diagram](image1)

No modulation because AOR = 1

POR

AOR wake-up command (with valid PWD)

Figure 4-8. Coil Voltage after Programming of a Memory Block

![Diagram](image2)

Write data to tag

Programming and data verification

5.6 ms

Read programmed memory block

(Block-read mode)

Read block 1..MAXBLK

(Regular-read mode)

Read data from tag

Programming and data verification

POR or single gap
Figure 4-9. Anticollision Procedure Using AOR Mode

Reader

init tags with AOR = "1", PWD = "1"

wait for \(t_W > 2.5 \) ms

"Select a single tag" send OPCODE + PWD => "wake up command"

decode data

all tags read?

NO

YES

Tag

POWER ON RESET read configuration

enter AOR mode

wait for OPCODE + PWD => "wake up command"

Receive damping ON

Password correct?

NO

YES

send block 1...MAXBLK

EXIT
4.11 Programming

When all necessary information has been received by the T5557, programming may proceed. There is a clock delay between the end of the writing sequence and the start of programming.

Typical programming time is 5.6 ms. This cycle includes a data verification read to grant secure and correct programming. After programming was executed successfully, the T5557 enters block-read mode transmitting the block just programmed (see Figure 4-8 on page 11).

Note: This timing and behavior is different from the e555x-family predecessors.

5. Error Handling

Several error conditions can be detected to ensure that only valid bits are programmed into the EEPROM. There are two error types, which lead to two different actions.

5.1 Errors During Writing

The following detectable errors could occur during writing data into the T5557:

- Wrong number of field clocks between two gaps (i.e., not a valid “1” or “0” pulse stream)
- Password mode is activated and the password does not match the contents of block 7
- The number of bits received in the command sequence is incorrect

Valid bit counts accepted by the T5557 are:

- Password write 70 bits (PWD = 1)
- Standard write 38 bits (PWD = 0)
- AOR wake up 34 bits (PWD = 1)
- Direct access with PWD 38 bits (PWD = 1)
- Direct access 6 bits (PWD = 0)
- Reset command 2 bits
- Page 0/1 regular-read 2 bits

If any of these erroneous conditions were detected, the T5557 enters regular-read mode, starting with block 1 of the page defined in the command sequence.

5.2 Errors Before/During Programming

If the command sequence was received successfully, the following error could still prevent programming:

- The lock bit of the addressed block is set already
- In case of a locked block, programming mode will not be entered. The T5557 reverts to block-read mode continuously transmitting the currently addressed block.

If the command sequence is validated and the addressed block is not write protected, the new data will be programmed into the EEPROM memory. The new state of the block write protection bit (lock bit) will be programmed at the same time accordingly.

Each programming cycle consists of 4 consecutive steps: erase block, erase verification (data = “0”), programming, write verification (corresponding data bits = “1”).

- If a data verification error is detected after an executed data block programming, the tag will stop modulation (modulation defeat) until a new command is transmitted.
6. **T5557 in Extended Mode (X-mode)**

 In general, the block 0 setting of the master key (bits 1 to 4) to the value “6” or “9” together with the X-mode bit will enable the extended mode functions.

 - Master key = “92”: Test mode access and extended mode are both enabled.
 - Master key = “6”: Any test mode access will be denied but the extended mode is still enabled.

 Any other master key setting will prevent the activation of the T5557 extended mode options, even when the X-mode bit is set.
6.1 Binary Bit-rate Generator

In extended mode the data rate is binary programmable to operate at any data rate between RF/2 and RF/128 as given in the formula below.

\[
\text{Data rate} = \frac{\text{RF}}{2^n+2}
\]

6.2 OTP Functionality

If the OTP bit is set to “1”, all memory blocks are write protected and behave as if all lock bits are set to 1. If the master key is set to “6” additionally, the T5557 mode of operation is locked forever (= OTP functionality).

If the master key is set to “9”, the test-mode access allows the re-configuration of the tag again.

Figure 6-1. Block 0 — Configuration Map in Extended Mode (X-mode)

<table>
<thead>
<tr>
<th>Lock Bit</th>
<th>Master Key</th>
<th>Data Bit Rate</th>
<th>X-Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1</td>
<td>Note 1, 2)</td>
<td>RF/(2n+2)</td>
<td></td>
</tr>
<tr>
<td>0 Unlocked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Locked</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) If Master Key = 6 and bit 15 set, then test-mode access is disabled and extended mode is active
2) If Master Key = 9 and bit 15 set, then extended mode is enabled

Table 6-1. T5557 Types of Modulation in Extended Mode

<table>
<thead>
<tr>
<th>Mode</th>
<th>Direct Data Output Encoding</th>
<th>Inverse Data Output Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSK1(^{(1)})</td>
<td>FSK/5-/8 “0” = RF/5; “1” = RF/8</td>
<td>FSK/8-/5 “0” = RF/8; “1” = RF/5 (= FSK1a)</td>
</tr>
<tr>
<td>FSK2(^{(1)})</td>
<td>FSK/10-/8 “0” = RF/10; “1” = RF/8</td>
<td>FSK/8-/10 “0” = RF/8; “1” = RF/10 (= FSK2a)</td>
</tr>
<tr>
<td>PSK1(^{(2)})</td>
<td>Phase change when input changes</td>
<td>Phase change when input changes</td>
</tr>
<tr>
<td>PSK2(^{(2)})</td>
<td>Phase change on bit clock if input high</td>
<td>Phase change on bit clock if input low</td>
</tr>
<tr>
<td>PSK3(^{(2)})</td>
<td>Phase change on rising edge of input</td>
<td>Phase change on falling edge of input</td>
</tr>
<tr>
<td>Manchester</td>
<td>“0” = falling edge, “1” = rising edge on mid-bit</td>
<td>“1” = falling edge, “1” = rising edge on mid-bit</td>
</tr>
<tr>
<td>Biphase 1 (’50)</td>
<td>“1” creates an additional mid-bit change</td>
<td>“0” creates an additional mid-bit change</td>
</tr>
<tr>
<td>Biphase 2 (’57)</td>
<td>“0” creates an additional mid-bit change</td>
<td>“1” creates an additional mid-bit change</td>
</tr>
<tr>
<td>NRZ</td>
<td>“1” = damping on, “0” = damping off</td>
<td>“0” = damping on, “1” = damping off</td>
</tr>
</tbody>
</table>

Notes: 1. A common multiple of bitrate and FSK frequencies is recommended.
2. In PSK mode the selected data rate has to be an integer multiple of the PSK sub-carrier frequency.
6.3 **Sequence Start Marker**

Figure 6-2. T5557 Sequence Start Marker in Extended Mode

<table>
<thead>
<tr>
<th>Block-read mode</th>
<th>Block n</th>
<th>01</th>
<th>Block n</th>
<th>10</th>
<th>Block n</th>
<th>01</th>
<th>Block n</th>
<th>10</th>
<th>Block n</th>
<th>01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular-read mode</td>
<td>10</td>
<td>Block 1</td>
<td>Block 2</td>
<td>MAXBLK</td>
<td>01</td>
<td>Block 1</td>
<td>Block 2</td>
<td>MAXBLK</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

The T5557 sequence start marker is a special damping pattern, which may be used to synchronize the reader. The sequence start marker consists of two bits (“01” or “10”) which are inserted as header before the first block to be transmitted if the bit 29 in extended mode is set. At the start of a new block sequence, the value of the two bits is inverted.

6.4 **Inverse Data Output**

The T5557 supports in its extended mode (X-mode) an inverse data output option. If inverse data is enabled, the modulator as shown in *Figure 6-3* works on inverted data (see *Table 6-1* on page 15). This function is supported for all basic types of encoding.

Figure 6-3. Data Encoder for Inverse Data Output
6.5 Fast Write

In the optional fast write mode the time between two gaps is nominally 12 field clocks for a “0” and 27 field clocks for a “1”. When there is no gap for more than 32 field clocks after a previous gap, the T5557 will exit the write mode. Please refer to Table 6-2 and Figure 4-3 on page 8.

Table 6-2. Fast Write Data Decoding Schemes

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Remark</th>
<th>Symbol</th>
<th>Min.</th>
<th>Max.</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start gap</td>
<td>–</td>
<td>S_{gap}</td>
<td>10</td>
<td>50</td>
<td>FC</td>
</tr>
<tr>
<td>Write gap</td>
<td>Normal write mode</td>
<td>$W_{n,gap}$</td>
<td>8</td>
<td>30</td>
<td>FC</td>
</tr>
<tr>
<td>Write gap</td>
<td>Fast write mode</td>
<td>$W_{f,gap}$</td>
<td>8</td>
<td>20</td>
<td>FC</td>
</tr>
<tr>
<td>Write data in normal mode</td>
<td>“0” data</td>
<td>d_0</td>
<td>16</td>
<td>31</td>
<td>FC</td>
</tr>
<tr>
<td>Write data in normal mode</td>
<td>“1” data</td>
<td>d_1</td>
<td>48</td>
<td>63</td>
<td>FC</td>
</tr>
<tr>
<td>Write data in fast mode</td>
<td>“0” data</td>
<td>d_0</td>
<td>8</td>
<td>15</td>
<td>FC</td>
</tr>
<tr>
<td>Write data in fast mode</td>
<td>“1” data</td>
<td>d_1</td>
<td>24</td>
<td>31</td>
<td>FC</td>
</tr>
</tbody>
</table>
Figure 6-4. Example of Manchester Coding with Data Rate RF/16
Figure 6-5. Example of Biphase Coding with Data Rate RF/16
Figure 6-6. Example: FSK1a Coding with Data Rate RF/40, Subcarrier $f_0 = RF/8$, $f_1 = RF/5$
Figure 6-7. Example of PSK1 Coding with Data Rate RF/16
Figure 6-8. Example of PSK2 Coding with Data Rate RF/16
Figure 6-9. Example of PSK3 Coding with Data Rate RF/16

Data stream

1

0

Data rate = 10

16 Field Clocks (FC)

Inverted modulator signal

sub carrier RF/2

RF-field

Inverted data signal modulator

sub carrier RF/2

8 FC
7. Absolute Maximum Ratings

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Symbol</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum DC current into Coil 1/Coil 2</td>
<td>I_{coil}</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Maximum AC current into Coil 1/Coil 2</td>
<td>I_{coil_p}</td>
<td>20</td>
<td>mA</td>
</tr>
<tr>
<td>Power dissipation (dice) (free-air condition, time of application: 1 s)</td>
<td>P_{tot}</td>
<td>100</td>
<td>mW</td>
</tr>
<tr>
<td>Electrostatic discharge maximum to MIL-Standard 883 C method 3015</td>
<td>V_{max}</td>
<td>4000</td>
<td>V</td>
</tr>
<tr>
<td>Operating ambient temperature range</td>
<td>T_{amb}</td>
<td>–40 to +85</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature range (data retention reduced)</td>
<td>T_{stg}</td>
<td>–40 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

8. Electrical Characteristics

$T_{amb} = +25^\circ C$; $f_{coil} = 125$ kHz; unless otherwise specified

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Type*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RF frequency range</td>
<td></td>
<td>f_{RF}</td>
<td>100</td>
<td>125</td>
<td>150</td>
<td>kHz</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Supply current (without current consumed by the external LC tank circuit)</td>
<td>$T_{amb} = 25^\circ C$</td>
<td></td>
<td>1.5</td>
<td>3</td>
<td></td>
<td>μA</td>
<td>T</td>
</tr>
<tr>
<td>2.2</td>
<td>Read – full temperature range</td>
<td></td>
<td>I_{DD}</td>
<td>2</td>
<td>4</td>
<td></td>
<td>μA</td>
<td>Q</td>
</tr>
<tr>
<td>2.3</td>
<td>Programming full temperature range</td>
<td></td>
<td></td>
<td>25</td>
<td>40</td>
<td></td>
<td>μA</td>
<td>Q</td>
</tr>
<tr>
<td>3.1</td>
<td>Coil voltage (AC supply)</td>
<td>POR threshold (50 mV hysteresis)</td>
<td></td>
<td>3.2</td>
<td>3.6</td>
<td>4.0</td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td>3.2</td>
<td>Read mode and write command(2)</td>
<td></td>
<td>$V_{coil pp}$</td>
<td>6</td>
<td></td>
<td></td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td>3.3</td>
<td>Program EEPROM(2)</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td>V</td>
<td>Q</td>
</tr>
<tr>
<td>4</td>
<td>Start-up time</td>
<td>$V_{coil pp} = 6V$</td>
<td></td>
<td>2.5</td>
<td>3</td>
<td></td>
<td>ms</td>
<td>Q</td>
</tr>
<tr>
<td>5</td>
<td>Clamp voltage</td>
<td>10 mA current into Coil 1/2</td>
<td></td>
<td>17</td>
<td>23</td>
<td></td>
<td>V</td>
<td>T</td>
</tr>
<tr>
<td>6.1</td>
<td>Modulation parameters</td>
<td>$V_{coilpp} = 6V$ on test circuit generator and modulation ON(3)</td>
<td></td>
<td>4.2</td>
<td>4.8</td>
<td></td>
<td>V</td>
<td>T</td>
</tr>
<tr>
<td>6.2</td>
<td>$I_{mod pp}$</td>
<td></td>
<td>400</td>
<td>600</td>
<td></td>
<td>μA</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>Thermal stability</td>
<td></td>
<td></td>
<td>–6</td>
<td></td>
<td></td>
<td>mV/°C</td>
<td>Q</td>
</tr>
</tbody>
</table>

* Type means: T: directly or indirectly tested during production; Q: guaranteed based on initial product qualification data

Notes:
1. I_{DD} measurement setup $R = 100$ kΩ $V_{CLK} = V_{coil} = 5V$: EEPROM programmed to 00 ... 000 (erase all); chip in modulation defeat. $I_{DD} = (V_{OUTmax} - V_{CLK})/R$
2. Current into Coil 1/Coil 2 is limited to 10 mA. The damping circuitry has the same structure as the e5550. The damping characteristics are defined by the internally limited supply voltage (= minimum AC coil voltage)
3. V_{mod} measurement setup: $R = 2.3$ kΩ $V_{CLK} = 3V$: setup with modulation enabled (see Figure 8-1 on page 25).
4. Since EEPROM performance is influenced by assembly processes, Atmel confirms the parameters for DOW (tested dice on uncut wafer) delivery.
5. The tolerance of the on-chip resonance capacitor C_r is ±10% at 3σ over whole production. The capacitor tolerance is ±3% at 3σ on a wafer basis.
6. The tolerance of the microcodule resonance capacitor C_r is ±5% at 3σ over whole production.
8. Electrical Characteristics (Continued)

\[T_{\text{amb}} = +25^\circ\text{C}; \ f_{\text{coil}} = 125\ kHz; \text{ unless otherwise specified} \]

<table>
<thead>
<tr>
<th>No.</th>
<th>Parameters</th>
<th>Test Conditions</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Type*</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Programming time</td>
<td>From last command gap to re-enter read mode (64 + 648 internal clocks)</td>
<td></td>
<td>5</td>
<td>5.7</td>
<td>6</td>
<td>ms</td>
<td>T</td>
</tr>
<tr>
<td>8</td>
<td>Endurance</td>
<td>Erase all / Write all(^{(a)})</td>
<td>(n_{\text{cycle}})</td>
<td>100000</td>
<td></td>
<td></td>
<td>Cycles</td>
<td>Q</td>
</tr>
<tr>
<td>9.1</td>
<td>Data retention</td>
<td>Top = 55°C(^{(4)})</td>
<td>(t_{\text{retention}})</td>
<td>10</td>
<td>20</td>
<td>50</td>
<td>Years</td>
<td>Q</td>
</tr>
<tr>
<td>9.2</td>
<td>Data retention</td>
<td>Top = 150°C(^{(4)})</td>
<td>(t_{\text{retention}})</td>
<td>96</td>
<td></td>
<td></td>
<td>hrs</td>
<td>T</td>
</tr>
<tr>
<td>9.3</td>
<td>Data retention</td>
<td>Top = 250°C(^{(4)})</td>
<td>(t_{\text{retention}})</td>
<td>24</td>
<td></td>
<td></td>
<td>hrs</td>
<td>Q</td>
</tr>
<tr>
<td>10</td>
<td>Resonance capacitor</td>
<td>Mask option(^{(5)})</td>
<td>(C_r)</td>
<td>70</td>
<td>78</td>
<td>86</td>
<td>pF</td>
<td>T</td>
</tr>
<tr>
<td>11.1</td>
<td>Microcodule capacitor parameters</td>
<td>Capacitance tolerance (T_{\text{amb}})</td>
<td>(C_r)</td>
<td>313.5</td>
<td>330</td>
<td>346.5</td>
<td>pF</td>
<td>T</td>
</tr>
<tr>
<td>11.2</td>
<td>Microcodule capacitor parameters</td>
<td>Temperature coefficient</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
<tr>
<td>11.3</td>
<td>Microcodule capacitor parameters</td>
<td>Temperature coefficient</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
</tr>
</tbody>
</table>

*) Type means: T: directly or indirectly tested during production; Q: guaranteed based on initial product qualification data

Notes:
1. \(I_{\text{DD}}\) measurement setup \(R = 100\ k\Omega; V_{\text{CLK}} = V_{\text{coil}} = 5V;\) EEPROM programmed to 00 ... 000 (erase all); chip in modulation defeat. \(I_{\text{DD}} = (V_{\text{OUTmax}} - V_{\text{CLK}})/R\)
2. Current into Coil 1/Coil 2 is limited to 10 mA. The damping circuitry has the same structure as the e5550. The damping characteristics are defined by the internally limited supply voltage (= minimum AC coil voltage)
3. \(V_{\text{mod}}\) measurement setup: \(R = 2.3\ k\Omega; V_{\text{CLK}} = 3V;\) setup with modulation enabled (see Figure 8-1 on page 25).
4. Since EEPROM performance is influenced by assembly processes, Atmel confirms the parameters for DOW (tested dice on uncutted wafer) delivery.
5. The tolerance of the on-chip resonance capacitor \(C_r\) is \(\pm 10\%\) at 3\(\sigma\) over whole production. The capacitor tolerance is \(\pm 3\%\) at 3\(\sigma\) on a wafer basis.
6. The tolerance of the microcodule resonance capacitor \(C_r\) is \(\pm 5\%\) at 3\(\sigma\) over whole production.

Figure 8-1. Measurement Setup for \(I_{\text{DD}}\) and \(V_{\text{mod}}\)
9. Ordering Information

<table>
<thead>
<tr>
<th>T5557</th>
<th>a b M c c</th>
<th>- x x x</th>
<th>Package</th>
<th>Drawing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>DDW</td>
<td>Dice on wafer, 6” un-sawn wafer, thickness 300 µm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DDT</td>
<td>Dice in tray (waffle pack), thickness 300 µm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DBW</td>
<td>Dice on solder bumped wafer, thickness 390 µm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sn63Pb37 on 5 µm Ni/Au, height 70 µm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>TASY</td>
<td>SO8 package (lead-free), tube</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PAE</td>
<td>MOA2 micro-module (lead-free)</td>
</tr>
</tbody>
</table>

Customer ID

			M01	Atmel standard (corresponds to “0”)
			11	2 pads without on-chip C
			14	4 pads with on-chip 75 pF
			15	Micro-module with 330 pF
			01	2 pads without C, damping during initialization

Notes: 1. Unique customer ID code programming according to Figure 5 is linked to a minimum order quantity of 1 Mio parts per year.
2. For available order codes refer to Atmel Sales/Marketing.

9.1 Ordering Examples (Recommended)

T555711-DDW Tested dice on unsawn 6” wafer, thickness 300 µm, no on-chip capacitor, no damping during POR initialisation; especially for ISO 11784/785 and access control applications

9.2 Available Order Codes

T555711-DDW, DDT
T555714-DDW
T555715-PAE
ATA555711-TASY

New order codes will be done on customer request if order quantities are upside 250k pieces.
10. Package Information

Figure 10-1. 2 Pad Layout for Wire Bonding

Dimensions in µm
Figure 10-2. 4 Pad Flip-chip Version with 70 µm Solder Bumps

Dimensions in µm

Figure 10-3. Solder Bump on NiAu

AL bondpad

PbSn

Ni

Passivation

70 µm
Figure 10-4. Wafer Map

Die: 0.894 \times 0.864, Step: 0.994 \times 0.934, N: 14 \times 7, Frame Step: 13.916 \times 15.878
> Shift-ASML = [0.3; -6.9] : 15539 dice, 87 shots (11 cols \times 9 rows)
> Shift-CANON/ALARM/SEM = [0.3; -6.9] – W2 = [-13.152; 6.9] – W1 = [-6.648; 6.9]
10.1 Failed Die Identification

Every die on the wafer not passing Atmel test sequence is marked with inch.
The inch dot specification:

- Dot size: 200 µm
- Position: center of die
- Color: black

Figure 10-5. NOA2 Micromodule

Technical drawings according to DIN specifications

Dimensions in mm

Note:
1. Reject hole by device testing
2. Punching cutline recommendation for singulation
3. Total package thickness excludes punching burr
4. Module dimension after galvanic separation

Drawing refers to following types: Micromodule

Drawing-No.: 6.549-5034.01-4
Issue: prel.; 25.09.02
Subcontractor: NedCard
Figure 10-6. Shipping Reel
Figure 10-7. SO8 Package

Package SO8
Dimensions in mm

Figure 10-8. Pinning SO8
11. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document.

<table>
<thead>
<tr>
<th>Revision No.</th>
<th>History</th>
</tr>
</thead>
<tbody>
<tr>
<td>4517J-RFID-03/06</td>
<td>• Section 9.1 “Ordering Examples (Recommended) changed</td>
</tr>
<tr>
<td></td>
<td>• Section 9.2 “Available Order Codes” changed</td>
</tr>
<tr>
<td>4517I-RFID-11/05</td>
<td>• Legal notice changed</td>
</tr>
<tr>
<td>4517H-RFID-08/05</td>
<td>• Put datasheet in a new template</td>
</tr>
<tr>
<td></td>
<td>• First page: Pb-free logo added</td>
</tr>
<tr>
<td></td>
<td>• Page 26: Ordering Information changed</td>
</tr>
</tbody>
</table>